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Abstract 

 Spin wave modes in a thin submicron cobalt square with a closure domain structure are 

obtained by using a micromagnetic equation of motion approach. In addition to modes 

with amplitude over the whole sample, some low-frequency modes, localized at the 

center, corners, and diagonals of the square, are also found. In analogy with the modes 

found in a circular vortex, the nonlocalized modes can be broadly classified into radial-

like and azimuthal-like modes, and their frequencies can be understood qualitatively in 

terms of the dispersion relation of spin wave modes of an unconfined film. Other modes 

that can be interpreted as the combination of radial and azimuthal modes are also 

observed.  
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Introduction 

 Recent progress in lithographic techniques allows the fabrication of high-quality, 

well-controlled, laterally defined magnetic structures of micron and submicron sizes. 

Both the static and dynamic properties of such structures with different geometric shapes 

are being extensively studied [1–23]. For potential application in high-density storage 

devices, structures with closure domains have a signficant advantage because they have 

small stray fields and thus reduce the interactions between adjacent elements. The 

simplest closure domain structure is a circular vortex with perfect cylindrical symmetry. 

Its excitation spectrum has been studied both theoretically [6, 11, 19–20] and 

experimentally [18, 21, 23]. A somewhat more complicated structure is a square particle 

whose magnetic ground state is a vortex with fourfold symmetry. A few normal modes of 

square vortex have been revealed experimentally [15–17], but because of the resolution 

limits of the experiments, the full excitation spectrum is not yet known. To provide a 

deeper understanding of the properties of a square vortex, we present a theoretical study 

of its magnetic normal modes.  

 In submicron-sized magnetic structures, both exchange and dipolar interactions 

have to be taken into account to calculate normal modes. Although the problem is of 

general interest from a fundamental standpoint, only recently [12, 14] have methods for 

finding the magnetic normal modes in complicated structures (e.g., particles in a vortex 

ground state) been implemented. To date, no analytical theory has been established to 

study the full spin wave spectrum in a square vortex. In this paper, we present a 

micromagnetic simulation of the spin wave modes in a cobalt square vortex.  
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 The simulations required solving the Landau-Lifshitz-Gilbert equation 

numerically as described in Ref. 12. The sample we chose to study is a polycrystalline Co 

thin film square with a lateral width of 305 nm and a thickness of 20 nm. The magnetic 

parameters used in the simulation are typical for polycrystalline Co, with the saturation 

magnetization Ms = 1400 emu/cc, exchange stiffness A=3 ×  10-6 ergs/cm, and zero 

anisotropy. In the simulations, the sample was divided into cubic cells with the cell size 

equal to 5 nm. At remanence the magnetic ground state of the sample is the closure 

domain structure shown in Fig. 1.  

 In order to excite spin wave modes in the stable ground state, perturbations have 

to be applied to the equilibrium configuration. Using different perturbations in the 

simulations serves two purposes. First, perturbations with different symmetries excite 

modes of different symmetries, and thus one can use the form of the perturbation to select 

a particular class of dynamic modes. Second, exciting only a subset of all normal modes 

reduces the effects of overlap between modes with similar frequencies. The simplest 

perturbation is to change the ground-state magnetization profile by uniformly tilting the 

magnetization in every cell by a small angle. However, to couple to modes with spatially 

different phases in a particular magnetization component, we divided the square along its 

diagonals into four triangles, or into four smaller squares along the midpoint of the edges. 

In each of these subregions the magnetization can be tilted by a different angle. Another 

type of perturbation is to apply a short magnetic field pulse either in or out of the sample 

plane. After a perturbation has been applied and the Gilbert damping coefficient has been 

set to zero, the time evolution of the magnetization of each cell is calculated and stored. 

A Fourier transform (FT) of the magnetization of each spin then yields its frequency 
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spectrum. The normal mode profile at each frequency can then be reconstructed from the 

amplitude and phase of the individual FTs. The nature of spin normal modes in square 

elements has been addressed experimentally in [15–17]. Although our aim is to provide a 

theoretical description of these results, the size of the squares in those investigations (! 1 

micron) is larger than we are currently able to simulate. Given our current computing 

power, we chose to simulate particles 305 nm on a side and 20 nm thick. Hence, although 

our calculated frequencies are not expected to match those measured in [15–17], the type 

of modes is expected to be similar, and our results should provide a qualitative guide. We 

also chose to simulate Co particles because we anticipate that they should provide a 

stronger coupling in our planned Brillouin scattering measurements. Figure 1a shows the 

results of a simulation of the closure domain structure, with a vortex at its center. The 

magnetization in the ground state is in the film plane everywhere except for the core 

region, where the magnetization is out of plane, as shown in Fig. 1b.  

 The square vortex has some similarity with the vortex found in circular 

geometries. In the circular vortex the normal modes could be classified into a core mode, 

radially varying modes, azimuthal varying modes, and combinations of the latter two 

types [20, 23]. The aim of this investigation is to determine how the reduced symmetry of 

the square affects this classification. The square vortex structure can be viewed as four 

triangular domains, each of which has a homogeneous magnetization in a different 

direction (Fig. 1a). However, the magnetization in the vortex core and in the four 90 

degree domain walls, which include the four corners, is strongly inhomogeneous and 

leads to inhomogeneous internal fields in these regions.  

 To discuss the results of this study, we classify the modes into three groups:  
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1. Low-frequency modes localized in the regions with inhomogeneous fields 

including the core, domain walls, and corners 

2. Intermediate-frequency modes with amplitudes concentrated in the homogeneous 

regions of magnetization  

3. High-frequency modes that resemble more closely the radial and azimuthal 

character of the modes in a circular disk  

An overview of the amplitude distribution in the three categories is shown schematically 

in Fig. 2. In the next section, we discuss how we have arrived at this classification 

scheme. 

 

Results and Discussion 

 In this section we give a general overview of the types of modes found in the 

square vortex and their frequency behavior. A complete characterization of the normal 

modes of our square vortex would require specifying the frequency and amplitude of all 

14,884 modes of our (61×61×4) cell particle. Since this would be both impractical and 

useless, we restrict our presentation to a few selected modes that enable a general 

classification scheme to be proposed. This scheme provides a guide to the type and 

frequency of the modes that can be expected in rectangular particles in a closure domain 

state. 

 We first briefly review the method of Ref. 12, explaining how we obtain mode 

profiles and their frequencies and how we present the data. From a perturbed equilibrium 

ground-state we monitor the time evolution of the spin motion in each cell. Since in the 

equilibrium state the magnetization of most of the cells lies in the plane of the square, a 
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convenient description of a mode is its dynamical, out-of-plane component of the 

magnetization, in this case, zm  in the coordinate system defined in Fig. 1a. From the FT 

of the zm  motion, one finds the amplitude iA  and phase iφ  in each cell i as a function of 

frequency. For a given perturbation, there are typically a number of frequencies where 

the amplitudes are large; that is, several modes are excited and well resolved. One can 

find a spatial profile of a mode at a particular frequency ω  by plotting )cos( iiA φ  on a 

square grid representing all the cells. This is equivalent to an instantaneous “snapshot” of 

the out-of-plane precession for a particular mode at frequency ω . In the following 

discussion, we use this snapshot representation to describe the different normal modes 

produced in our simulations. 

 Figure 3 shows a snapshot of zm for the lowest-frequency mode we observed. The 

color bar on the left applies to all the other snapshot pictures in the sense that redness 

indicates a positive value and blueness a negative one. As a function of time, the red and 

blue spots in the image rotate around the center of the square. Clearly, this 0.3 GHz mode 

is strongly localized at the center of the square and is equivalent to the well-known mode 

of the precession of the vortex core in circular disks. Since the frequency resolution in 

our simulation is about 0.3 GHz, the frequency of this mode is accurate only to ± 0.15 

GHz.  

 The next-lowest-frequency modes are those with large amplitudes localized at the 

corners. In a square we may therefore expect four modes of this type – one for each 

corner. For example, we could have four separate modes with the power localized in a 

single corner in each mode. In the absence of interactions, these four modes would be 

degenerate in frequency. However, because of the interactions between the precessing 
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spins in the different corners, in this case resulting primarily from the long-range dipolar 

interactions, the real solutions will be linear combinations of the single corner states. 

Figure 4 (a-c) shows a set of modes localized at the corners of the square.  We find the 

following: a mode with equal amounts of power in all corners and all the corners moving 

in phase (Fig. 4a), a mode with equal amounts of power in all corners, where the corners 

along one diagonal are in phase with each other but out of phase with the corners along 

the other diagonal (Fig. 4b), and two modes where the power is localized at corners only 

along one diagonal (Fig. 4c shows one of these modes).  

 The corner mode frequencies are all very close, indicating that the interaction 

between the corners is small. With our frequency resolution (0.3 GHz), the modes shown 

in Figs. 4b and 4c are not resolved. We can explain this behavior with the following 

argument. For the all-in-phase mode an individual corner sees the dipolar field produced 

by the three other corners all pointing up at the same time. The sum of these fields 

produces an additional restoring force that shifts the frequency of this mode slightly 

upwards. For all the other modes the dipolar fields from the other corners tend to cancel, 

and an individual corner sees a smaller restoring field. For example, in Fig. 4b an 

individual corner sees two of the remaining corners as up and one as down. Similarly in 

Fig. 4c an individual corner sees the field from the only other active corner.   

 The mode shown in Fig. 4c, which is strongly localized at the upper-left and 

lower-right corners, is degenerate with the mode with amplitude at the two other corners. 

Because of this degeneracy these modes can be combined with an arbitrary phase. In 

particular, a right- and left-circularly polarized pair can also be chosen as the basis of 
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these two modes. In a real system it is not clear how imperfections in the sample might 

select between the two possibilities.  

 Figure 4 (d-f) shows the last type of localized mode sketched in Fig. 2a. Here the 

mode amplitude is localized primarily along the domain walls that lie along the 

diagonals. As for the corner modes, the relative phase of the amplitude along each 

diagonal gives rise to four modes with similar frequencies. In this case the mode in Fig. 

4f is doubly degenerate. In all three modes shown in Fig. 4 (d-f) the amplitude at each 

corner is out of phase with that on its neighboring diagonal. The 13.2 GHz mode shown 

in Fig. 4d has all four corners in phase with each other but out of phase with the four 

diagonals. Each corner (or diagonal) of the 11.9 GHz mode shown in Fig. 4e is in phase 

with its opposite one and out of phase with its neighbors. Figure 4f shows another mode 

with different relative phases. This mode can be interpreted as a combination of 

“circularly polarized” and “single diagonal” modes. All three modes have slightly 

different frequencies, again primarily the result of dipolar interactions. As we saw in the 

case of the corner modes, the most in-phase mode, Fig. 4d, again has the highest 

frequency.  

 So far we have discussed the low-frequency modes that are localized in regions 

with an inhomogeneous equilibrium magnetization including the vortex core, the corners, 

and the diagonals of the square. We now turn to the type of modes shown in Fig. 2b with 

the amplitude localized in the homogeneous magnetization regions. Figure 5a shows a 

mode with its amplitude concentrated within the four domains. There is no node in any 

direction in this mode because all regions with nonzero amplitude are in phase. This 

mode can therefore be viewed as the “uniform resonance” mode and is expected to be the 



 9 

strongest mode in ferromagnetic resonance experiments. From the earlier discussion on 

the corner modes, one should also expect to find modes where the power distribution is 

similar to that seen in Fig. 5a, but the phase relationships between the excitations in each 

of the four domains is not that of the uniform mode. We do, in fact, find modes at slightly 

lower frequencies as expected, but they appear to be hybrids, with modes of the type 

shown in Fig. 2a with multiple nodes along each diagonal. Figure 5b shows another mode 

localized in the homogeneous regions, but this mode has one node between the center and 

the edge.  

 To understand the modes in our third category, we first recall that the normal 

modes in a circular vortex with perfect symmetry [20, 23] can be characterized as radial 

modes, azimuthal modes, and combinations of these two types. These modes have been 

calculated theoretically [20, 23] and observed in experiments [18]. A square vortex loses 

the perfect symmetry of a circular vortex but maintains a fourfold symmetry. In our 

simulation of a square vortex, we again find some modes that can be classified into radial 

(Fig. 6 a-d) and azimuthal (Fig. 6 e-g). We discuss the behavior of these modes below. 

 Figure 6 (a-d) shows the radial-like modes observed in our simulations. As shown 

in Fig. 6a, the amplitude of the 24.5 GHz mode is distributed at the center and around an 

outer circle. Instead of being continuous along the azimuthal direction as in a circular 

vortex, the mode is discretized in a pattern consistent with the symmetry of the square 

vortex. Since there is a phase difference of π  between the central and outer part, we can 

define a radial nodal line in this mode. Figures 6b and 6c show the modes with two and 

three nodal lines. Even the mode with four nodal lines is well resolved in our simulation, 

as shown in Fig. 6d. The frequency of the radial-like mode increases as the number of 
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nodes is increased, as is seen in Fig. 7a. This result is consistent with the behavior of spin 

wave frequencies in an extended magnetic film, as we shall see below.   

 Figure 6 (e-g) shows several of the azimuthal-like modes observed in our 

simulations. The key characteristic of this class of modes is that the phase changes as one 

circles around the center of the square. We characterize a mode by counting the number 

of nodes around the circumference of the square. Figures 6e, 6f, and 6g show the modes 

with 12, 20, and 32 nodes, respectively. We have probably missed a lot of azimuthal-like 

modes in our simulations. Nonetheless, a pattern for frequency as a function of number of 

nodes emerges clearly, as can be seen in Fig. 7b. The frequency of the azimuthal-like 

modes initially decreases and then increases as the number of nodes increases. Both 

dipolar and exchange interactions play roles in this situation, as will be discussed below. 

  To understand the frequency behavior of the radial-like and azimuthal-like modes, 

we compare the results of Fig. 7 to the dispersion relation in ferromagnetic thin films. In 

each plot, the first data point corresponds to the uniform mode with no nodes. For the 

radial-like modes the frequency increases monotonically as the number of the nodes 

increases. This behavior is similar to the behavior of the Damon-Eshbach mode [24] with 

wave vectors perpendicular to the static magnetization. With regard to the magnetization 

distribution of the square vortex, the radial-like modes also change phase in a direction 

perpendicular to the magnetization. In the case of the Damon-Eshbach mode in an 

extended ferromagnetic film, the dipolar fields cause the initial increase in frequency as 

the number of nodes (or equivalently propagation wavevector) increases. In the present 

case the exchange interaction also contributes to the overall frequency increase. For the 

azimuthal-like modes, the frequency decreases at first and then increases as the number 
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of nodes increases. This behavior is similar to the behavior of the backward volume 

modes, in which case the wave vector is parallel to the static magnetization. The 

azimuthal-like modes change phase around the center of the square, which is parallel to 

the static magnetization of a square vortex. With a small number of nodes, the dipolar 

interactions are important, and the frequency decreases at first. This behavior is similar to 

the negative dispersion observed experimentally and calculated analytically with only the 

dipolar interaction taken into account in larger circular vortices [20]. With a larger 

number of nodes, the exchange interaction becomes more important, and the frequency 

increases. Although only a small number of data points are shown in Fig. 7, the frequency 

behavior of the radial-like and azimuthal-like modes qualitatively mirror the features of 

equivalent modes in unconfined ferromagnetic thin films.  

 In our simulations, we also observed modes that can be interpreted as a 

combination of radial-like and azimuthal-like modes, as shown in Fig. 5 (c-d). Both of 

those modes change phase, not only radially, but also around the center. Compared to the 

radial-like mode with just one nodal line as shown in Fig. 6a, both of these modes have 

lower frequencies as a result of the dipolar interaction. 

 

Mode symmetries 
 
 
 The modes presented in the previous section can also be classified according to 

their symmetry determined by group theory.  The symmetry of the vortex ground state in 

a square particle is C4.  In assigning this symmetry it must be remembered that the 

magnetization, being an axial vector, reverses sign under improper symmetry operations 

such as reflections.  Due to this it can be seen that mirror planes, that appear to be 
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symmetry operations at first glance, actually produce either a change in chirality or of 

polarity and hence are not symmetry operations of the magnetic grounstate.  The 

character table for the C4 group is shown in Table I and is particularly interesting since 

the two components of the E mode are only degenerate if time reversal is a symmetry 

operation.  In the case of our magnetic sample this is not the case and hence special care 

must be taken in assigning the modes. 

We begin with the modes in Fig. 4 (a-c).  The mode shown in a clearly has the 

full symmetry of the system and hence is an A mode.  The mode in b changes sign under 

C4 operations and is hence a B mode.  The mode in c is, experimentally, one of a 

degenerate pair and hence is an E mode.  Strictly speaking Table I predicts that the two E 

modes should be non degenerate and chiral differing only in their ± π/2 phase difference 

along the two diagonals.   

 The modes in Fig. 4 (d-f) follow the same classification as those in Fig. 4 (a-c).  

Similarly the modes in Figs. 5a and b are of A and B symmetry respectively while all 

those in Fig. 6 (a-d) belong to the A representation.  The modes in Fig. 6 (e-g) have B, B 

and A symmetry and those in Fig. 5c and d belong to the B and E classification.  We note 

that within the accuracy of the simulations all the E modes discussed above appear as 

pairs whose frequencies are not resolved. 

 The most interesting mode is, however, the one in Fig. 3 that can be identified as 

one component of the E doublet.  In this case the pattern rotates clockwise as a function 

of time.  The other component of the E doublet in this case does not exist: there is no 

equivalent mode that rotates counterclockwise.  We stress that there is no reason why 

such a mode must exist.  
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 In this context of mode classification it is instructive to consider the case of a 

square particle with a round or square hole in the center.  If the vortex core is eliminated 

with such a scheme, the particle acquires C4v symmetry with its resulting character table 

also shown in Table I.  In this case the E modes are strictly degenerate and no 

intrinsically chiral modes are expected to be present in the system.  In this particular case 

there can be no mode similar in character to that found in cylindrical dots and shown here 

in Fig. 3 for a square particle. 

 

 

Comparison with Previous Experiments and Simulations 

 Excitations in a square vortex have been observed in several experiments [15–

17]. Our simulation results confirm most of the experimental observations. The vortex 

core precession mode (Fig. 3) and modes localized at the corners of the square (Fig. 4) 

obtained in our simulations were not observed in any of the experiments [15–17]. Motion 

of the vortex core was observed in Raabe’s experiment [Fig. 2 of Ref. 17], but its 

resonance frequency was not determined.  The fact that the corner and core modes 

were missing in these experiments on square vortices [15–17] may be due to several 

reasons. First, since the samples studied in those experiments were larger than those 

simulated here, the frequencies may have been too low to be resolved. The data in 

Raabe’s experiment shows that the motion of the vortex core is indeed much slower than 

that of the domain walls [17]. Both the size and the material of the samples studied in 

experiments imply even lower frequencies than those in our simulations. Second, the 

spatial resolution in the experiments was not fine enough to resolve these highly localized 
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modes. The third reason that the corner modes are missing in experiments may be due to 

the effect of edge roundness of the experimentally investigated square samples. The 

corner modes observed in simulations are localized in small regions of a few tens of nm 

which is comparable to the resolution of the lithographic processing. 

 The domain wall modes, however, were observed in all the experiments [15–17], 

and they have lower frequencies than do the modes with amplitude over the whole 

square. This fact is consistent with our results. As illustrated in our simulations, the 

domain wall modes can have different phases along the four diagonals. It is not clear 

which of these have been observed in the experiments. 

 Different numbers of the nonlocalized modes were observed in the experiments 

[15–17]. In Park’s experiment [16], only one was resolved, and it corresponds to the 

uniform mode with the out-of-plane component at the upper and lower triangular 

domains out of phase. Up to five such modes were observed in Perzlmaier’s experiment 

[15]. Besides the uniform mode, three “transversal quantized” modes are equivalent to 

our “radial-like” modes and one “longitudinal quantized” mode is equivalent to our 

“azimuthal-like” mode. The relative frequencies of these modes are also consistent 

between the experiment and our simulation. In Raabe’s experiment [17], two modes with 

the same spatial distribution but different frequencies and initial phases were observed. 

This phenomenon cannot be explained on the basis of our simulations. The experimental 

data shows that the in-plane component at the upper and lower triangular domains is in 

phase in these two modes [17]. Thus, the out-of-plane component at the upper and lower 

triangular domains should be out of phase. Indeed, two possible modes satisfy this 

condition with different phase patterns at the left and right triangular domains. But the 
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frequency of these two modes should be degenerate, which is not consistent with the 

experiment. This could be due to nonlinear effects, as suggested in [17]. In our 

simulations, the uniform mode with the out-of-plane component of all four triangular 

domains in phase is well resolved as shown in Fig. 5a. However, the modes concentrated 

in triangular domains but out of phase are not resolved. Considering the dipolar 

interaction among each domain, those modes are expected to have lower frequencies than 

that of the in-phase mode. In this frequency range, there exist many modes with the 

amplitude localized along the diagonals. It is likely that the out of phase modes in the 

triangular domains are hybridized with the diagonal modes, so that the profiles of the out 

of phase modes are distorted and can not be resolved in the simulations. The 

hybridization effect should be more important in our relatively small sample than the 

large samples in experiments [16-17], where out of phase modes are indeed observed. 

 In Ref. [16], the magnetic normal modes of square vortices were also studied 

theoretically using micromagnetic simulations with larger sample size (2 mµ  to 10 mµ ) 

and different material parameters (permalloy). The cell size used in Ref. [16] (12.5 nm) is 

larger than that in our simulations (5 nm). They report two modes, a lower frequency 

mode concentrated in the domain walls which is similar to those reported by us in Fig. 4 

(d-f), and a higher frequency mode concentrated in the top and bottom quadrants that is 

most likely one of the modes we do not observe due to the reasons given in the previous 

paragraph.  

 

Summary and Conclusions 
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 Using a micromagnetic simulation approach, we have studied the spin wave 

modes in a submicron cobalt square sample with a closure domain structure. Several 

different modes were observed. Low-frequency modes are localized in the 

inhomogeneous regions, namely, the core, the corners, and the diagonals. The core mode 

is equivalent to the well-known core precession mode in cylindrical dots. Both the corner 

and diagonal modes form a closely spaced set of modes with different phase patterns. 

These modes are not present in cylindrical particles. The uniform mode is equally 

distributed over the four closure domains. More complicated modes can be classified into 

radial-like modes and azimuthal-like modes in analogy to the modes in a circular vortex. 

Because of the reduced symmetry, those modes have more internal structure than in a 

circular dot. The frequency behavior of the radial-like modes and azimuthal-like modes 

can be understood qualitatively in terms of the dispersion relation of spin wave modes of 

an unconfined film. We also observed some other modes that can be interpreted as the 

combination of a radial-like mode and an azimuthal-like mode. 

 We have also reproduced the calculations of magnetic normal modes in a square 

vortex using a dynamical matrix approach as described in Ref. [14].  The results of the 

two approaches agree well with each other and the field dependence of mode frequencies 

obtained by the dynamical matrix approach will be discussed in a later paper. 
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Figure 1. (Color online) Equilibrium state of the Co square at zero field: (a) in-plane 
magnetization distribution in the vortex state; (b) out-of-plane component of the 
magnetization zM ; xN  and yN  are the number of cells in x and y direction, 
respectively. The magnetization pattern is taken from the second of four layers, but 
the magnetization variation through the thickness of the film is very small.   
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Figure 2. Sketches of amplitude distribution of different modes observed in a square 
vortex. Black and white indicate different phases; grey represents negligible 
amplitude. (a) mode localized at the core, the corners and diagonals; (b) modes 
mainly distributed at the four triangular domains; (c) radial-like mode, azimuthal-
like mode, and combination of radial-like and azimuthal-like modes. 
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Figure 3. (Color) Snapshot of the dynamical out-of-plane component of the 
magnetization zm  for the lowest-frequency mode localized at the vortex core. Note 
that the red and blue spots in the image rotate around the center of the square with 
time, which is not demonstrated by the snapshot at a particular instant. The color 
bar on the right also applies to the following snapshot pictures in the sense that 
redness means positive values and blueness negative values. 
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Figure 4. (Color) Snapshots of the dynamical out-of-plane component of the 
magnetization zm  for modes localized at corners (a-c) and along diagonals (d-f).  
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Figure 5. (Color) Snapshots of the dynamical out-of-plane component of the 
magnetization zm  for modes mainly distributed at the four triangular domains (a, 
b) and for combination of radial-like and azimuthal-like modes (c, d).  
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Figure 6. (Color) Snapshots of the dynamical out-of-plane component of the 
magnetization zm  for radial-like modes (a-d) and for azimuthal-like modes (e-g).  
.  
 
 
 
 
 

 
 
Figure 7. (a) Frequency of the radial-like modes as a function of the number of 
radial lines; (b) frequency of the azimuthal-like modes as a function of number of 
nodes. 
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Table 1.  Character tables for C4 and C4v groups. 
 

C4 E C2 C4 C4
3 

A 1 1 1 1 
B 1 1 -1 -1 
E 1 -1 i -i 
E 1 -1 -i i 

 
C4v E C2 C4 +- σx, σy σ1, σ2 
A1 1 1 1 1 1 
A2 1 1 1 -1 -1 
B1 1 1 -1 1 -1 
B2 1 1 -1 -1 1 
E 2 -2 0 0 0 
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